K. Saoudi

Search this author in Google Scholar


Articles: 1

Elliptic problem in an exterior domain driven by a singularity with a nonlocal Neumann condition

Debajyoti Choudhuri, Kamel Saoudi

↓ Abstract   |   Article (.pdf)

MFAT 29 (2023), no. 1-2, 16-29

16-29

We prove existence of a ground state solution to the following problem. \begin{align*} (-\Delta)^{s}u+u&=\lambda|u|^{-\gamma-1}u+P(x)|u|^{p-1}u \qquad \hbox{in}~\mathbb{R}^N\setminus\Omega,\\ N_su(x)&=0\qquad\text{in}~\Omega \end{align*} where $N\geq 2$, $\lambda>0$, $0\lt s,\gamma\lt 1$, $p\in(1,2_s^*-1)$ with $2_s^*=\frac{2N}{N-2s}$. Moreover, $\Omega\subset\mathbb{R}^N$ is a smooth bounded domain, $(-\Delta)^s$ denotes the $s$-fractional Laplacian and finally $N_s$ denotes a nonlocal operator that describes the Neumann boundary condition. We further establish existence of infinitely many bounded solutions to the problem.

Доведено існування розв’язку основного стану наступної задачі: \begin{align*} (-\Delta)^{s}u+u &=\lambda|u|^{-\gamma-1}u+P(x)|u|^{p-1}u \qquad \text{в}~ \mathbb{R}^N\setminus\Omega\\ N_su(x)&=0\qquad\text{в}~\Omega \end{align*} де $N\geq2$, $\lambda>0$, $0\lt s,\gamma\lt 1$, $p\in(1,2_s^*-1)$ з $2_s^*=\frac{2N}{N-2s}$. Крім того, $\Omega\subset\mathbb{R}^N$ — гладка обмежена область, $(-\Delta)^s$ позначає $s$-дробовий лапласіан і, нарешті, $N_s$ позначає нелокальний оператор, який описує неймановску граничну умову. Далі встановлюємо існування нескінченної кількості обмежених розв’язків задачі.


All Issues