Abstract
Let a sequence $\left\{v_k \right\}^{+\infty}_{-\infty}\in l_2$ and a real sequence $\left\{\lambda_k \right\}^{+\infty}_{-\infty}$ such that $\left\{\lambda_k^{-1} \right\}^{+\infty}_{-\infty}\in l_2$, and an orthonormal basis $\left\{e_k \right\}^{+\infty}_{-\infty}$ of a Hilbert space be given. We describe a sequence $M=\left\{\mu_k \right\}^{+\infty}_{-\infty}$, $M\cap \mathbb{R}=\varnothing$, such that the families $$ f_k = \sum\limits_{j\in\mathbb{Z}} {v_j\left(\lambda_j-\bar{\mu}_k \right)^{-1}}e_k, \quad k\in \mathbb{Z} $$ form an unconditional basis in $\mathfrak{H}$.
Full Text
Article Information
Title | About one class of Hilbert space uncoditional bases |
Source | Methods Funct. Anal. Topology, Vol. 13 (2007), no. 3, 296-300 |
MathSciNet |
MR2356762 |
Copyright | The Author(s) 2007 (CC BY-SA) |
Authors Information
A. A. Tarasenko
Universidad Autonoma del Estado de Hidalgo Pachuca, Hidalgo, Mexico
M. G. Volkova
South-Ukrainian Pedagogical University, Odessa, Ukraine
Citation Example
A. A. Tarasenko and M. G. Volkova, About one class of Hilbert space uncoditional bases, Methods Funct. Anal. Topology 13
(2007), no. 3, 296-300.
BibTex
@article {MFAT404,
AUTHOR = {Tarasenko, A. A. and Volkova, M. G.},
TITLE = {About one class of Hilbert space uncoditional bases},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {13},
YEAR = {2007},
NUMBER = {3},
PAGES = {296-300},
ISSN = {1029-3531},
MRNUMBER = {MR2356762},
URL = {http://mfat.imath.kiev.ua/article/?id=404},
}