M. G. Volkova

Search this author in Google Scholar

Articles: 5

On one class of nonselfadjoint operators with a discrete spectrum

G. M. Gubreev, M. G. Volkova, A. A. Tarasenko

↓ Abstract   |   Article (.pdf)

MFAT 17 (2011), no. 3, 211-218


In this work completely continious nondissipative operators with two-dimensional imaginary parts, acting in separable Hilbert space are studied. The criteria of completeness and unconditional basis property of root vectors of such operators are obtained. The results are formulated in terms of characteristic matrix-valued functions of nonselfadjoint operators and proved using analysis of functional models in de Branges spaces.

Unconditional bases of de Branges spaces and interpolation problems corresponding to them

G. M. Gubreev, M. G. Volkova

↓ Abstract   |   Article (.pdf)

MFAT 17 (2011), no. 2, 144-149


In this paper the unconditional bases of de Branges spaces are constructed from the values of reproducing kernels. Appropriate problems of interpolation by entire functions are also considered. The paper is a continuation of papers [2, 3].

One remark about the unconditional exponential bases and cosine bases, connected with them

G. M. Gubreev, M. G. Volkova

↓ Abstract   |   Article (.pdf)

MFAT 14 (2008), no. 4, 330-333


In the paper we consider examples of basis families $\{\cos \lambda_k t\}^\infty_1$, $\lambda_k>0$, in the space $L_2(0,\sigma)$, such that systems $\{e^{i\lambda_kt},e^{-i\lambda_kt}\}^\infty_1$ don't form an unconditional basis in space $L_2(-\sigma,\sigma)$.

About one class of Hilbert space uncoditional bases

A. A. Tarasenko, M. G. Volkova

↓ Abstract   |   Article (.pdf)

MFAT 13 (2007), no. 3, 296-300


Let a sequence $\left\{v_k \right\}^{+\infty}_{-\infty}\in l_2$ and a real sequence $\left\{\lambda_k \right\}^{+\infty}_{-\infty}$ such that $\left\{\lambda_k^{-1} \right\}^{+\infty}_{-\infty}\in l_2$, and an orthonormal basis $\left\{e_k \right\}^{+\infty}_{-\infty}$ of a Hilbert space be given. We describe a sequence $M=\left\{\mu_k \right\}^{+\infty}_{-\infty}$, $M\cap \mathbb{R}=\varnothing$, such that the families $$ f_k = \sum\limits_{j\in\mathbb{Z}} {v_j\left(\lambda_j-\bar{\mu}_k \right)^{-1}}e_k, \quad k\in \mathbb{Z} $$ form an unconditional basis in $\mathfrak{H}$.

On a class of unconditional bases in the weighted spaces of the entire functions whose order of growth is equal to 1/2 and on their applications

G. M. Gubreev, M. G. Volkova

MFAT 7 (2001), no. 3, 22-32


All Issues