A. A. Tarasenko
Search this author in Google Scholar
On one class of nonselfadjoint operators with a discrete spectrum
G. M. Gubreev, M. G. Volkova, A. A. Tarasenko
MFAT 17 (2011), no. 3, 211-218
211-218
In this work completely continious nondissipative operators with two-dimensional imaginary parts, acting in separable Hilbert space are studied. The criteria of completeness and unconditional basis property of root vectors of such operators are obtained. The results are formulated in terms of characteristic matrix-valued functions of nonselfadjoint operators and proved using analysis of functional models in de Branges spaces.
About one class of Hilbert space uncoditional bases
A. A. Tarasenko, M. G. Volkova
MFAT 13 (2007), no. 3, 296-300
296-300
Let a sequence $\left\{v_k \right\}^{+\infty}_{-\infty}\in l_2$ and a real sequence $\left\{\lambda_k \right\}^{+\infty}_{-\infty}$ such that $\left\{\lambda_k^{-1} \right\}^{+\infty}_{-\infty}\in l_2$, and an orthonormal basis $\left\{e_k \right\}^{+\infty}_{-\infty}$ of a Hilbert space be given. We describe a sequence $M=\left\{\mu_k \right\}^{+\infty}_{-\infty}$, $M\cap \mathbb{R}=\varnothing$, such that the families $$ f_k = \sum\limits_{j\in\mathbb{Z}} {v_j\left(\lambda_j-\bar{\mu}_k \right)^{-1}}e_k, \quad k\in \mathbb{Z} $$ form an unconditional basis in $\mathfrak{H}$.
About one interpolation problem by entire functions of exponential type in the weight spaces
G. M. Gubreev, A. A. Tarasenko
MFAT 11 (2005), no. 4, 370-375
370-375
On a class of finite-dimensional perturbations of dissipative Volterra operators
MFAT 11 (2005), no. 1, 65-72
65-72
On a class of generators of one-parameter $C_{0}$-semigroup of operators
MFAT 9 (2003), no. 2, 179-184
179-184
Unconditional basis property for some families of functions and continuous invertibility of Toeplitz operators with unimodular symbols
G. M. Gubreev, A. A. Tarasenko
MFAT 8 (2002), no. 1, 30-35
30-35