Abstract
In the paper we consider examples of basis families $\{\cos \lambda_k t\}^\infty_1$, $\lambda_k>0$, in the space $L_2(0,\sigma)$, such that systems $\{e^{i\lambda_kt},e^{-i\lambda_kt}\}^\infty_1$ don't form an unconditional basis in space $L_2(-\sigma,\sigma)$.
Full Text
Article Information
Title | One remark about the unconditional exponential bases and cosine bases, connected with them |
Source | Methods Funct. Anal. Topology, Vol. 14 (2008), no. 4, 330-333 |
MathSciNet |
MR2469072 |
Copyright | The Author(s) 2008 (CC BY-SA) |
Authors Information
G. M. Gubreev
Poltava National Technical University, 24 Pervomaiskii prospect, Poltava, 36011, Ukraine
M. G. Volkova
South-Ukrainian Pedagogical University, Odessa, Ukraine
Citation Example
G. M. Gubreev and M. G. Volkova, One remark about the unconditional exponential bases and cosine bases, connected with them, Methods Funct. Anal. Topology 14
(2008), no. 4, 330-333.
BibTex
@article {MFAT482,
AUTHOR = {Gubreev, G. M. and Volkova, M. G.},
TITLE = {One remark about the unconditional exponential bases and cosine bases, connected with them},
JOURNAL = {Methods Funct. Anal. Topology},
FJOURNAL = {Methods of Functional Analysis and Topology},
VOLUME = {14},
YEAR = {2008},
NUMBER = {4},
PAGES = {330-333},
ISSN = {1029-3531},
MRNUMBER = {MR2469072},
URL = {http://mfat.imath.kiev.ua/article/?id=482},
}