G. M. Gubreev
Search this author in Google Scholar
On one class of nonselfadjoint operators with a discrete spectrum
G. M. Gubreev, M. G. Volkova, A. A. Tarasenko
MFAT 17 (2011), no. 3, 211-218
211-218
In this work completely continious nondissipative operators with two-dimensional imaginary parts, acting in separable Hilbert space are studied. The criteria of completeness and unconditional basis property of root vectors of such operators are obtained. The results are formulated in terms of characteristic matrix-valued functions of nonselfadjoint operators and proved using analysis of functional models in de Branges spaces.
Unconditional bases of de Branges spaces and interpolation problems corresponding to them
MFAT 17 (2011), no. 2, 144-149
144-149
In this paper the unconditional bases of de Branges spaces are constructed from the values of reproducing kernels. Appropriate problems of interpolation by entire functions are also considered. The paper is a continuation of papers [2, 3].
A spectral decomposition in one class of non-selfadjoint operators
G. M. Gubreev, M. V. Dolgopolova, S. I. Nedobachiy
MFAT 16 (2010), no. 2, 140-157
140-157
In this paper, a class of special finite dimensional perturbations of Volterra operators in Hilbert spaces is investigated. The main result of the article is finding necessary and sufficient conditions for an operator in a chosen class to be similar to the orthogonal sum of a dissipative and an anti-dissipative operators with finite dimensional imaginary parts.
One remark about the unconditional exponential bases and cosine bases, connected with them
MFAT 14 (2008), no. 4, 330-333
330-333
In the paper we consider examples of basis families $\{\cos \lambda_k t\}^\infty_1$, $\lambda_k>0$, in the space $L_2(0,\sigma)$, such that systems $\{e^{i\lambda_kt},e^{-i\lambda_kt}\}^\infty_1$ don't form an unconditional basis in space $L_2(-\sigma,\sigma)$.
About nilpotent $C_0$-semigroups of operators in the Hilbert spaces and criteria for similarity to the integration operator
G. V. Lukashenko, G. M. Gubreev
MFAT 14 (2008), no. 1, 60-66
60-66
In the paper, we describe a class of operators $A$ that have empty spectrum and satisfy the nilpotency property of the generated $C_0$-semigroup $U(t)=\exp\{-iAt\},\, t\geqslant 0$, and such that the operator$A^{-1}$ is similar to the integration operator on the corresponding space $L_2(0,a)$.
About one interpolation problem by entire functions of exponential type in the weight spaces
G. M. Gubreev, A. A. Tarasenko
MFAT 11 (2005), no. 4, 370-375
370-375
Damir Zyamovich Arov (to the 70th anniversary of his birth)
V. M. Adamyan, Yu. M. Berezansky, M. L. Gorbachuk, V. I. Gorbachuk, G. M. Gubreev, A. N. Kochubei, M. M. Malamud
MFAT 10 (2004), no. 2, 1-3
1-3
Unconditional basis property for some families of functions and continuous invertibility of Toeplitz operators with unimodular symbols
G. M. Gubreev, A. A. Tarasenko
MFAT 8 (2002), no. 1, 30-35
30-35
On a class of unconditional bases in the weighted spaces of the entire functions whose order of growth is equal to 1/2 and on their applications
MFAT 7 (2001), no. 3, 22-32
22-32