# T. H. Rasulov

Search this author in Google Scholar

### Eigenvalues and virtual levels of a family of 2×2 operator matrices

Tulkin H. Rasulov, Elyor B. Dilmurodov

Methods Funct. Anal. Topology **25** (2019), no. 3, 273-281

In the present paper we consider a family of $2 \times 2$ operator matrices ${\mathcal A}_\mu(k),$ $k \in {\mathbb T}^3:=(-\pi, \pi]^3,$ $\mu>0,$ associated with the Hamiltonian of a system consisting of at most two particles on a three-dimensional lattice ${\mathbb Z}^3,$ interacting via creation and annihilation operators. We prove that there is a value $\mu_0$ of the parameter $\mu$ such that only for $\mu=\mu_0$ the operator ${\mathcal A}_\mu(\overline{0})$ has a virtual level at the point $z=0=\min\sigma_{\rm ess}({\mathcal A}_\mu(\overline{0}))$ and the operator ${\mathcal A}_\mu(\overline{\pi})$ has a virtual level at the point $z=18=\max\sigma_{\rm ess}({\mathcal A}_\mu(\overline{\pi}))$, where $\overline{0}:=(0,0,0), \overline{\pi}:=(\pi,\pi,\pi) \in {\mathbb T}^3.$ The absence of the eigenvalues of ${\mathcal A}_\mu(k)$ for all values of $k$ under the assumption that $\mu=\mu_0$ is shown. The threshold energy expansions for the Fredholm determinant associated to ${\mathcal A}_\mu(k)$ are obtained.

### On the finiteness of the discrete spectrum of a 3x3 operator matrix

Methods Funct. Anal. Topology **22** (2016), no. 1, 48-61

An operator matrix $H$ associated with a lattice system describing three particles in interactions, without conservation of the number of particles, is considered. The structure of the essential spectrum of $H$ is described by the spectra of two families of the generalized Friedrichs models. A symmetric version of the Weinberg equation for eigenvectors of $H$ is obtained. The conditions which guarantee the finiteness of the number of discrete eigenvalues located below the bottom of the three-particle branch of the essential spectrum of $H$ is found.

### The Faddeev equation and essential spectrum of a Hamiltonian in Fock space

Mukhiddin I. Muminov, Tulkin H. Rasulov

Methods Funct. Anal. Topology **17** (2011), no. 1, 47-57

A Hamiltonian (model operator) $H$ associated to a quantum system describing three particles in interaction, without conservation of the number of particles, is considered. The Faddeev type system of equations for eigenvectors of $H$ is constructed. The essential spectrum of $H$ is described by the spectrum of the channel operator.

### On the spectrum of a model operator in Fock space

Tulkin H. Rasulov, Mukhiddin I. Muminov, Mahir Hasanov

Methods Funct. Anal. Topology **15** (2009), no. 4, 369-383

A model operator $H$ associated to a system describing four particles in interaction, without conservation of the number of particles, is considered. We describe the essential spectrum of $H$ by the spectrum of the channel operators and prove the Hunziker-van Winter-Zhislin (HWZ) theorem for the operator $H.$ We also give some variational principles for boundaries of the essential spectrum and interior eigenvalues.

### The Efimov effect for a model operator associated with the Hamiltonian of a non conserved number of particles

Sergio Albeverio, Saidakhmat N. Lakaev, Tulkin H. Rasulov

Methods Funct. Anal. Topology **13** (2007), no. 1, 1-16

A model operator associated with the energy operator of a system of three non conserved number of particles is considered. The essential spectrum of the operator is described by the spectrum of a family of the generalized Friedrichs model. It is shown that there are infinitely many eigenvalues lying below the bottom of the essential spectrum, if a generalized Friedrichs model has a zero energy resonance.