H. Woracek

Search this author in Google Scholar

Articles: 2

Stability of N-extremal measures

Matthias Langer, Harald Woracek

↓ Abstract   |   Article (.pdf)

MFAT 21 (2015), no. 1, 69-75


A positive Borel measure $\mu$ on $\mathbb R$, which possesses all power moments, is N-extremal if the space of all polynomials is dense in $L^2(\mu)$. If, in addition, $\mu$ generates an indeterminate Hamburger moment problem, then it is discrete. It is known that the class of N-extremal measures that generate an indeterminate moment problem is preserved when a finite number of mass points are moved (not ``removed''!). We show that this class is preserved even under change of infinitely many mass points if the perturbations are asymptotically small. Thereby ``asymptotically small'' is understood relative to the distribution of ${\rm supp}\mu$; for example, if ${\rm supp}\mu=\{n^\sigma\log n:\,n\in\mathbb N\}$ with some $\sigma>2$, then shifts of mass points behaving asymptotically like, e.g. $n^{\sigma-2}[\log\log n]^{-2}$ are permitted.

The square-transform of Hermite-Biehler functions. A geometric approach

Vyacheslav Pivovarchik, Harald Woracek

↓ Abstract   |   Article (.pdf)

MFAT 13 (2007), no. 2, 187-200


We investigate the subclass of symmetric indefinite Hermite-Biehler functions which is obtained from positive definite Hermite-Biehler functions by means of the square-transform. It is known that functions of this class can be characterized in terms of location of their zeros. We give another, more elementary and geometric, proof of this result. The present proof employs a `shifting-of-zeros' perturbation method. We apply our results to obtain information on the eigenvalues of a concrete boundary value problems.

All Issues