Yuriy Golovaty

Search this author in Google Scholar


Articles: 1

Schrödinger operators with $(\alpha\delta'+\beta \delta)$-like potentials: norm resolvent convergence and solvable models

Yuriy Golovaty

↓ Abstract   |   Article (.pdf)

Methods Funct. Anal. Topology 18 (2012), no. 3, 243-255

For real functions $\Phi$ and $\Psi$ that are integrable and compactly supported, we prove the norm resolvent convergence, as $\varepsilon\to0$, of a family $S_\varepsilon$ of one-dimensional Schrödinger operators on the line of the form $$ S_\varepsilon= -\frac{d^2}{d x^2}+\alpha\varepsilon^{-2}\Phi(\varepsilon^{-1}x)+\beta\varepsilon^{-1}\Psi(\varepsilon^{-1}x). $$ The limit results are shape-dependent: without reference to the convergence of potentials in the sense of distributions the limit operator $S_0$ exists and strongly depends on the pair $(\Phi,\Psi)$. A class of nontrivial point interactions which are formally related the pseudo-Hamiltonian $-\frac{d^2}{dx^2}+\alpha\delta'(x)+\beta\delta(x)$ is singled out. The limit behavior, as $\varepsilon\to 0$, of the scattering data for such potentials is also described.


All Issues