S. Taarabti

Search this author in Google Scholar


Articles: 1

Nonlocal eigenvalue problems with indefinite weight

Said Taarabti

↓ Abstract   |   Article (.pdf)

MFAT 26 (2020), no. 3, 283-294

283-294

In the present paper, we consider a class of eigenvalue problems driven by a nonlocal integro-differential operator $\mathcal{L}_{K}^{p(x)}$ with Dirichlet boundary conditions. Under certain assumptions on p and q, we establish that any $\lambda>0$ suficiently small is an eigenvalue of the nonhomogeneous nonlocal problem ($\mathcal{P}_{\lambda}$).

Розглядається клас спектральних задач, пов'язаних із нелокальним інтегро-диференціальним оператором $\mathcal{L}_{K}^{p(x)}$ із крайовою умовою Дирихле. За певних припущень щодо $p$ і $q$ доведено, що кожне достаньо мале $\lambda>0$ є власним значенням неоднорідної нелокальної задачі ($\mathcal{P}_{\lambda}$).


All Issues