M. M. Malamud
Search this author in Google Scholar
On the completeness of general boundary value problems for $2 \times 2$ first-order systems of ordinary differential equations
A. V. Agibalova, M. M. Malamud, L. L. Oridoroga
MFAT 18 (2012), no. 1, 4-18
4-18
Let $B={\rm diag} (b_1^{-1}, b_2^{-1}) \not = B^*$ be a $2\times 2$ diagonal matrix with \break $b_1^{-1}b_2 \notin{\Bbb R}$ and let $Q$ be a smooth $2\times 2$ matrix function. Consider the system $$-i B y'+Q(x)y=\lambda y, \; y= {\rm col}(y_1,y_2), \; x\in[0,1],$$ of ordinary differential equations subject to general linear boundary conditions $U_1(y) = U_2(y) = 0.$ We find sufficient conditions on $Q$ and $U_j$ that guaranty completeness of root vector system of the boundary value problem. Moreover, we indicate a condition on $Q$ that leads to a completeness criterion in terms of the linear boundary forms $U_j,\ j\in \{1,2\}.$
Generalized resolvents and boundary triplets for dual pairs of linear relations
Seppo Hassi, Mark Malamud, Vadim Mogilevskii
MFAT 11 (2005), no. 2, 170-187
170-187
Damir Zyamovich Arov (to the 70th anniversary of his birth)
V. M. Adamyan, Yu. M. Berezansky, M. L. Gorbachuk, V. I. Gorbachuk, G. M. Gubreev, A. N. Kochubei, M. M. Malamud
MFAT 10 (2004), no. 2, 1-3
1-3
Simultaneous similarity of pairs of convolution Volterra operators to fractional powers of the operator of integration
MFAT 9 (2003), no. 2, 154-162
154-162
Krein type formula for canonical resolvents of dual pairs of linear relations
M. M. Malamud, V. I. Mogilevskii
MFAT 8 (2002), no. 4, 72-100
72-100
Generalized resolvents of symmetric operators and admissibility
H. S. V. de Snoo, V. A. Derkach, S. Hassi, M. M. Malamud
MFAT 6 (2000), no. 3, 24-55
24-55