# O. P. Boyko

Search this author in Google Scholar

### On maximal multiplicity of eigenvalues of finite-dimensional spectral problem on a graph

Olga Boiko, Olga Martynyuk, Vyacheslav Pivovarchik

Methods Funct. Anal. Topology **25** (2019), no. 2, 104-117

Recurrence relations of the second order on the edges of a metric connected graph together with boundary and matching conditions at the vertices generate a spectral problem for a self-adjoint finite-dimensional operator. This spectral problem describes small transverse vibrations of a graph of Stieltjes strings. It is shown that if the graph is cyclically connected and the number of masses on each edge is not less than 3 then the maximal multiplicity of an eigenvalue is $\mu+1$ where $\mu$ is the cyclomatic number of the graph. If the graph is not cyclically connected and each edge of it bears at least one point mass then the maximal multiplicity of an eigenvalue is expressed via $\mu$, the number of edges and the number of interior vertices in the tree obtained by contracting all the cycles of the graph into vertices.

### On a generalization of the three spectral inverse problem

O. P. Boyko, O. M. Martynyuk, V. N. Pivovarchik

Methods Funct. Anal. Topology **22** (2016), no. 1, 74-80

We consider a generalization of the three spectral inverse problem, that is, for given spectrum of the Dirichlet-Dirichlet problem (the Sturm-Liouville problem with Dirichlet conditions at both ends) on the whole interval $[0,a]$, parts of spectra of the Dirichlet-Neumann and Dirichlet-Dirichlet problems on $[0,a/2]$ and parts of spectra of the Dirichlet-Newman and Dirichlet-Dirichlet problems on $[a/2,a]$, we find the potential of the Sturm-Liouville equation.

### Inverse spectral problem for a star graph of Stieltjes strings

Methods Funct. Anal. Topology **14** (2008), no. 2, 159-167

We solve the inverse spectral problem for a star graph of Stieltjes strings (these are threads bearing a finite number of point masses) with the pendant ends fixed, i.e., we recover the masses and lengths of the intervals between them from the spectra of small transverse vibrations of the graph together with the spectra of the Dirichlet problems on the edges and the total lengths of the edges.

### Inverse problem for Stieltjes string damped at one end

Olga Boyko, Vyacheslav Pivovarchik

Methods Funct. Anal. Topology **14** (2008), no. 1, 10-19

Small transversal vibrations of the Stieltjes string, i.e., an elastic thread bearing point masses is considered for the case of one end being fixed and the other end moving with viscous friction in the direction orthogonal to the equilibrium position of the string. The inverse problem of recovering the masses, the lengths of subintervals and the coefficient of damping by the spectrum of vibrations of such a string and its total length is solved.