Yu. G. Kondratiev
Search this author in Google Scholar
Diffusion approximation for transport equations with dissipative drifts
Luca Di Persio, Yuri Kondratiev, Viktorya Vardanyan
MFAT 28 (2022), no. 1, 1-11
1-11
We study stochastic differential equations with a small perturbation
parameter. Under the dissipative condition on the drift coefficient
and the local Lipschitz condition on the drift and diffusion
coefficients we prove the existence and uniqueness result for the
perturbed SDE, also the convergence result for the solution of the
perturbed system to the solution of the unperturbed system when the
perturbation parameter approaches zero. We consider the application
of the above-mentioned results to the Cauchy problem and the
transport equations.
Вивчаються стохастичні диференціальні рівняння з невеликим
параметр збурення. За умови дисипативності коефіцієнту дрейфа у
випадку, коли дрейф та коефіцієнти дифузії задовольняють локальній
умови Ліпшица, доведено існування та єдиність розв'язку збуреного
стохастичного диференціального рівняння. Також отримано результат
про збіжність розв'язку збуреної системи до розв'язку незбуреної
системи у разі коли параметр збурення прямує до нуля. Розглянуто
застосування вищезазначених результатів до задачі Коші та рівняння
транспорту.
Green Measures for Time Changed Markov Processes
Yuri Kondratiev, José Luís da Silva
MFAT 27 (2021), no. 3, 227-236
227-236
In this paper we study Green measures for certain classes of random
time change Markov processes where the random time change are
inverse subordinators. We show the existence of the Green measure
for these processes under the condition of the existence of the
Green measure of the original Markov processes and they
coincide. Applications to fractional dynamics in given.
У цій роботі досліджуються міри Гріна для деяких класів марківських
процесів з випадковою заміною часу, де випадкова заміна часу є
оберненим субординатором. Показано існування міри Гріна для цих
процесів за умови існування міри Гріна вихідних марківських процесів
і що вони збігаються. Також даються застосування отриманих
результатів до динаміки процесів із дробовими похідними.
Markov dynamics on the cone of discrete Radon measures
Dmitri Finkelshtein, Yuri Kondratiev, Peter Kuchling
MFAT 27 (2021), no. 2, 173-191
173-191
We start with a brief overview of the known facts about the spaces
of discrete Radon measures those may be considered as
generalizations of configuration spaces. Then we study three Markov
dynamics on the spaces of discrete Radon measures: analogues of the
contact model, of the Bolker--Dieckmann--Law--Pacala model, and of
the Glauber-type dynamics. We show how the results obtained
previously for the configuration spaces can be modified for the case
of the spaces of discrete Radon measures.
Стаття розпочинається з короткого огляду відомих фактів про
простори дискретних мір Радона, які можуть розглядатися як
узагальнення просторів конфігурацій. Далі розглядаються три
марківські динаміки на просторах дискретних мір Радона: аналоги
моделі контактів та моделі Болкера--Дікмана--Лоу--Пакали та аналог
динаміки типу Глаубера. Показано як результати, отримані для
просторів конфігурацій, можуть бути узагальнені для випадки
просторів дискретних мір Радона.
Representations of the Infinite-Dimensional Affine Group
MFAT 26 (2020), no. 4, 348-355
348-355
We introduce an infinite-dimensional affine group and construct its
irreducible unitary representation. Our approach follows the one
used by Vershik, Gelfand and Graev for the diffeomorphism group, but
with modifications made necessary by the fact that the group does
not act on the phase space. However it is possible to define its
action on some classes of functions.
Вводиться нескінченновимірна аффінна група і будується її
незвідне унітарне представлення. Наш підхід наслідує метод
Вершика-Гельфанда-Граєва для групи дифеоморфізмів, з необхідними
модифікаціями, пов’язаними з тим, що група не діє на фазовому
просторі, але можна визначити її дію на деяких класах функцій.
Green measures for Markov processes
Yuri Kondratiev, José L. da Silva
MFAT 26 (2020), no. 3, 241-248
241-248
In this paper we study Green measures of certain classes of Markov
processes. In particular Brownian motion and processes with jump generators
with different tails. The Green measures are represented as a sum
of a singular and a regular part given in terms of the jump generator.
The main technical question is to find a bound for the regular
part.
Ми вивчаємо міри Ґріна для деяких класів марківських процесів.
Зокрема для броунівського руху і стрибкових процесів. Міри Ґріна містять сингулярну
і регулярну компоненти. Основна задача полягає в оцінці регулярної частини.
Weak-coupling limit for ergodic environments
Martin Friesen, Yuri Kondratiev
MFAT 25 (2019), no. 2, 118-133
118-133
The main aim of this work is to establish an averaging principle for a wide class of interacting particle systems in the continuum. This principle is an important step in the analysis of Markov evolutions and is usually applied for the associated semigroups related to backward Kolmogorov equations, c.f. [27]. Our approach is based on the study of forward Kolmogorov equations (a.k.a. Fokker-Planck equations). We describe a system evolving as a Markov process on the space of finite configurations, whereas its rates depend on the actual state of another (equilibrium) process on the space of locally finite configurations. We will show that ergodicity of the environment process implies the averaging principle for the solutions of the coupled Fokker-Planck equations.
Automorphisms generated by umbral calculus on a nuclear space of entire test functions
Ferdinand Jamil, Yuri Kondratiev, Sheila Menchavez, Ludwig Streit
MFAT 24 (2018), no. 4, 339-348
339-348
In this paper we show that Sheffer operators, mapping monomials to certain Sheffer polynomial sequences, such as falling and rising factorials, Charlier, and Hermite polynomials extend to continuous automorphisms on the space of entire functions of first order growth and minimal type.
Fractional kinetics in a spatial ecology model
José Luís da Silva, Yuri Kondratiev, Pasha Tkachov
MFAT 24 (2018), no. 3, 275-287
275-287
In this paper we study the effect of subordination to the solution of a model of spatial ecology in terms of the evolution density. The asymptotic behavior of the subordinated solution for different rates of spatial propagation is studied. The difference between subordinated solutions to non-linear equations with classical time derivative and solutions to non-linear equation with fractional time derivative is discussed.
Fractional statistical dynamics and fractional kinetics
José Luís da Silva, Anatoly N. Kochubei, Yuri Kondratiev
MFAT 22 (2016), no. 3, 197-209
197-209
We apply the subordination principle to construct kinetic fractional statistical dynamics in the continuum in terms of solutions to Vlasov-type hierarchies. As a by-product we obtain the evolution of the density of particles in the fractional kinetics in terms of a non-linear Vlasov-type kinetic equation. As an application we study the intermittency of the fractional mesoscopic dynamics.
Fractional contact model in the continuum
Anatoly N. Kochubei, Yuri G. Kondratiev
MFAT 21 (2015), no. 2, 179–187
179–187
We consider the evolution of correlation functions in a non-Markov version of the contact model in the continuum. The memory effects are introduced by assuming the fractional evolution equation for the statistical dynamics. This leads to a behavior of time-dependent correlation functions, essentially different from the one known for the standard contact model.
An operator approach to Vlasov scaling for some models of spatial ecology
D. Finkelshtein, Yu. Kondratiev, O. Kutoviy
MFAT 19 (2013), no. 2, 108-126
108-126
We consider Vlasov-type scaling for Markov evolution of birth-and-death type in continuum, which is based on a proper scaling of corresponding Markov generators and has an algorithmic realization in terms of related hierarchical chains of correlation functions equations. The existence of rescaled and limiting evolutions of correlation functions and convergence to the limiting evolution are shown. The obtained results enable us to derive a non-linear Vlasov-type equation for the density of the limiting system.
Kawasaki dynamics in the continuum via generating functionals evolution
D. L. Finkelshtein, Yu. G. Kondratiev, M. J. Oliveira
MFAT 18 (2012), no. 1, 55-67
55-67
We construct the time evolution of Kawasaki dynamics for a spatial infinite particle system in terms of generating functionals. This is carried out by an Ovsjannikov-type result in a scale of Banach spaces, which leads to a local (in time) solution. An application of this approach to Vlasov-type scaling in terms of generating functionals is considered as well.
On two-component contact model in continuum with one independent component
D. O. Filonenko, D. L. Finkelshtein, Yu. G. Kondratiev
MFAT 14 (2008), no. 3, 209-228
209-228
Properties of a contact process in continuum for a system of particles of two types, one which is independent of the other, are considered. We study dynamics of the first and the second order correlation functions, their asymptotics, and the dependence on parameters of the~system.
Measures on configuration spaces defined by relative energies
D. L. Finkelshtein, Yu. G. Kondratiev
MFAT 11 (2005), no. 2, 126-155
126-155
Existence of Gibbs State for Non-Ideal Gas in $R^d$: the case of pair, long-range interaction
Yu. G. Kondratiev, O. V. Kutoviy, E. A. Pechersky
MFAT 10 (2004), no. 3, 33-43
33-43
Correlation functionals for Gibbs measures and Ruelle bounds
Yuri G. Kondratiev, Tobias Kuna
MFAT 9 (2003), no. 1, 9-58
9-58
Analytic aspects of Poissonian white noise analysis
Yuri G. Kondratiev, Tobias Kuna, Maria João Oliveira
MFAT 8 (2002), no. 4, 15-48
15-48
Symmetric differential operators of the second order in Poisson spaces
D. L. Finkelshtein, Yu. G. Kondratiev, A. Yu. Konstantinov, M. Röckner
MFAT 6 (2000), no. 4, 14-25
14-25
On a spectral representation for correlation measures in configuration space analysis
Yuri M. Berezansky, Yuri G. Kondratiev, Tobias Kuna, Eugene Lytvynov
MFAT 5 (1999), no. 4, 87-100
87-100
Analysis and geometry on ${\mathbb R}_{+}$-marked configuration space
Yuri G. Kondratiev, Eugene W. Lytvynov, Georgi F. Us
MFAT 5 (1999), no. 1, 29-64
29-64
Marked Gibbs measures via cluster expansion
Jose L. Da Silva, Yuri G. Kondratiev, Tobias Kuna
MFAT 4 (1998), no. 4, 50-81
50-81
Some examples of Dirichlet operators associated with the actions of infinite dimensional Lie groups
S. Albeverio, A. Daletskii, Yu. Kondratiev
MFAT 4 (1998), no. 2, 1-15
1-15
Differential geometry on compound Poisson space
Yuri G. Kondratiev, José L. Silva, Ludwig Streit
MFAT 4 (1998), no. 1, 32-58
32-58
Generalized Appell systems
Yuri G. Kondratiev, José Luis Silva, Ludwig Streit
MFAT 3 (1997), no. 3, 28-61
28-61
Complex Gaussian analysis and the Bargman-Segal space
Martin Grothaus, Yuri G. Kondratiev, Ludwig Streit
MFAT 3 (1997), no. 2, 46-64
46-64
Euclidean Gibbs states for quantum continuous systems with Boltzmann statistics via cluster expansion
Yu. G. Kondratiev, A. L. Rebenko, M. Röckner, M. Röckner, G. V. Shchepanʹuk
MFAT 3 (1997), no. 1, 62-81
62-81
Quantum hierarchical model
S. Albeverio, Yu. G. Kondratiev, Yu. V. Kozitsky
MFAT 2 (1996), no. 3, 1-35
1-35
Biorthogonal systems in hypergroups: an extension of non-Gaussian analysis
Yu. M. Berezansky, Yu. G. Kondratiev
MFAT 2 (1996), no. 2, 1-50
1-50